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Alzheimer’s  disease  (AD)  is  an  irreversible  neurodegenerative  disorder  with  progressive  impairment  of
memory  and  other  mental  functions.  Magnetic  resonance  images  (MRI)  have  been  widely  used  as  an
important  imaging  modality  of brain  for AD diagnosis  and  monitoring  the  disease  progression.  The  lon-
gitudinal  analysis  of  sequential  MRIs  is important  to model  and  measure  the  progression  of  the  disease
along  the  time  axis for more  accurate  diagnosis.  Most  existing  methods  extracted  the  features  capturing
the  morphological  abnormalities  of brain  and  their  longitudinal  changes  using  MRIs  and  then  designed  a
classifier  to discriminate  different  groups.  However,  these  methods  have  several  limitations.  First,  since
the feature  extraction  and  classifier  model  are  independent,  the  extracted  features  may  not  capture  the
full characteristics  of  brain  abnormalities  related  to AD.  Second,  longitudinal  MR  images  may  be  missing
at some  time  points  for some  subjects,  which  results  in  difficulties  for extraction  of  consistent  features
for  longitudinal  analysis.  In  this  paper,  we  present  a classification  framework  based  on  combination  of
convolutional  and  recurrent  neural  networks  for  longitudinal  analysis  of  structural  MR  images  in  AD
diagnosis.  First,  Convolutional  Neural  Networks  (CNN)  is  constructed  to learn  the  spatial  features  of  MR
images for the  classification  task.  After  that,  recurrent  Neural  Networks  (RNN)  with  cascaded  three  bidi-
rectional gated  recurrent  units  (BGRU)  layers  is constructed  on  the  outputs  of  CNN  at  multiple  time
points  for extracting  the  longitudinal  features  for  AD  classification.  Instead  of  independently  performing
feature  extraction  and  classifier  training,  the  proposed  method  jointly  learns  the spatial  and  longitudi-
nal  features  and disease  classifier,  which  can  achieve  optimal  performance.  In addition,  the  proposed
method  can  model  the longitudinal  analysis  using  RNN  from  the  imaging  data  at  various  time  points.

Our  method  is  evaluated  with  the  longitudinal  T1-weighted  MR images  of  830  participants  including
198  AD,  403  mild  cognitive  impairment  (MCI),  and  229  normal  controls  (NC)  subjects  from  Alzheimer’s
Disease  Neuroimaging  Initiative  (ADNI)  database.  Experimental  results  show  that  the  proposed  method
achieves  classification  accuracy  of 91.33%  for  AD  vs. NC  and  71.71%  for  pMCI  vs. sMCI,  demonstrating  the
promising  performance  for  longitudinal  MR image  analysis.

©  2019  Elsevier  Ltd. All  rights  reserved.
. Introduction

Alzheimer’s disease (AD) is an irreversible and chronic neurode-
enerative disorder with progressive impairment of the memory
nd other important mental functions. According to the survey, AD
ften happens in people aged more than 65, and it has been offi-
ially listed as the sixth-leading cause of death in the United States
Ventura et al., 2008). The population of AD is around 90 million

t present, which is expected to reach 300 million by 2050 (Zhu
t al., 2015). Currently there is no effective cure for AD, but it is
f great interest to develop treatments that can delay its progres-

∗ Corresponding author.
E-mail address: mhliu@sjtu.edu.cn (M.  Liu).

ttps://doi.org/10.1016/j.compmedimag.2019.01.005
895-6111/© 2019 Elsevier Ltd. All rights reserved.
sion, especially if AD can be diagnosed at an early stage when those
treatments would have the most impact. Thus, accurate and early
diagnosis of AD is important for patient care and treatment. Mild
Cognitive Impairment (MCI) is known as a prodromal stage of AD
with a high risk of progressing to AD. It can be categorized as pro-
gressive MCI  (pMCI) and stable MCI  (sMCI). pMCI means that MCI
subjects will convert to AD after some time while sMCI subjects are
stable and will not convert. Recently, machine learning methods
have been widely investigated in brain imaging analysis for com-
puter aided diagnosis of diseases (Jiao et al., 2017; Lei et al., 2016,
2017; Liu et al., 2013, 2014; Liu et al., 2015; Wang et al., 2016; Zhang
et al., 2018).
Structural magnetic resonance imaging (MRI) is a non-invasive
medical imaging modality to capture the internal body structures.
It is the most sensitive imaging scan of brain in routine clinical

https://doi.org/10.1016/j.compmedimag.2019.01.005
http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compmedimag.2019.01.005&domain=pdf
mailto:mhliu@sjtu.edu.cn
https://doi.org/10.1016/j.compmedimag.2019.01.005
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ractice to visualize brain anatomical structures. MRI  scans pro-
ide detailed information about the internal anatomical structures
nd the morphology of brain tissues such as white matter (WM),
ray matter (GM) and cerebrospinal fluid (CSF). They have been
ecognized as an important image biomarker for AD progression
nd been widely studied to develop computer-aided diagnosis sys-
em using pattern recognition methods (Hinrichs et al., 2009, 2011;
osseini-Asl et al., 2016; Jiao et al., 2017; Kloppel et al., 2008, epub;
iu et al., 2016, 2018; Yu et al., 2017). The raw brain images are too
uge and noisy to be directly used for diagnosis. To facilitate the
orphological analysis, MR  brain image is partitioned into multi-

le anatomical regions, i.e., regions of interest (ROIs), by grouping
oxels through the warping of a labeled atlas and then the regional
easurements are computed as the features for image classifica-

ion (Liu et al., 2015; Zhang et al., 2011). The ROI-based feature
xtraction can significantly reduce the feature dimension and pro-
ide robust representations, but some subtle abnormal changes
ay  be ignored. In addition, the ROIs are made by prior hypotheses

nd the abnormal brain regions relevant to AD might not fit well
o the pre-defined ROIs, thus limiting the representation power of
xtracted features. To capture richer information, voxel-wise fea-
ures were extracted after registering all brain images to associate
ach voxel with a vector of scalar measurements for AD diagnosis
Kloppel et al., 2008, epub). The brain volume is segmented to three
ypes of tissues, i.e., GM,  WM,  and CSF, and the voxel-wise tissue
ensity maps are computed for classification. The voxel-wise fea-
ures can capture the subtle abnormal changes, but they are of huge
imensionality, far more features than training subjects.

Recently, deep learning methods have gained a good reputa-
ion especially to extract informative features for computer vision
nd medical image analysis (Shen et al., 2017). Instead of manu-
lly extracting features on the expert’s knowledge about the target
omain, deep learning can discover the latent and discriminant rep-
esentations of image data by incorporating the feature extraction
nto the task learning process. In addition, deep learning can con-
truct multi-layer neural networks to transform image data to task
utputs (e.g., disease/normal) while learning hierarchical feature
epresentations from data. Thus, complex patterns can be discov-
red with deep learning. Convolutional neural networks (CNNs)
ad been studied for AD diagnosis (Adrien, 2015; Hosseini-Asl et al.,
016). Hosseini-Asl et al. (Hosseini-Asl et al., 2016) have proposed

 deep 3D-CNNs to learn generic features to predict AD using the
tructural MRI  scans. In this method, the deep 3D-CNNs were built
pon a 3D-CAES (convolutional Autoencoders) pre-trained with
he rigidly registered training images to capture anatomical shape
ariations, followed by fully connected and softmax layers for clas-
ification. Adrien et al. (Adrien, 2015) proposed a deep learning
lassification algorithm for AD diagnosis using both the structural
RI  and functional MRI. In this method, the CNN model was  built
ith one convolutional layer trained with sparse Autoencoder,
hich were explored to extract the imaging features for AD classi-
cation.

Most of existing methods in recent studies have focused on using
he imaging data from single-time point to detect the pathologi-
al changes for AD diagnosis. In practice, there are also increasing
mount of longitudinal data collected at the follow-up time points
hich often provide useful information about the pathological

rogression of disease. With the availability of these longitudinal
mage data at multiple time points, it is possible to use them for
mproving AD prediction (Jiao et al., 2017; Li et al., 2012; Zhang and
hen, 2012). In (Li et al., 2012), the longitudinal cortical thickness
hanges are extracted for analyzing the development of pathol-

gy in AD. In addition, both baseline and longitudinal biomarkers
re combined and utilized to more accurately predict the future
linical changes of MCI  patients (Zhang and Shen, 2012). Although
hese methods can incorporate the information from multiple time-
aging and Graphics 73 (2019) 1–10

points for improving the classification accuracy, they require that
every subject should have longitudinal images at all time points,
and a subject with incomplete data (which occurs very often in the
longitudinal study) cannot be used. This will throw away a large
amount of useful information and reduce the number of training
samples. It is important to investigate how to use the incomplete
longitudinal data.

The longitudinal analysis of sequential MR  images is important
to model and measure the disease progression along the time axis
for more accurate diagnosis. In this work, we present a classification
framework based on combination of convolutional and recurrent
neural networks for longitudinal analysis of structural MR images
at variable-length time series for AD diagnosis. First, a deep 3D CNN
model is constructed to learn the spatial features from the struc-
tural MR  images for the task of disease classification. After that, a
deep RNN model with cascaded three bidirectional gated recurrent
units (BGRU) layers is constructed on the outputs of CNN from the
imaging data of multiple time points for extracting the longitudinal
features, leading to a classification predicting score. BGRU can pro-
cess the varying length image sequences to alleviate the problem of
incomplete longitudinal data. The proposed method can automat-
ically learn the spatial and longitudinal features from the imaging
data at multiple time points of variable length for classification.
Our method is evaluated using T1-weighted structural MR  brain
images on 830 subjects including 198 AD patients, 403 MCI  (includ-
ing 236 sMCI and 167 pMCI) subjects, and 229 normal controls (NC)
from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.
Experimental results demonstrate the promising performance of
the proposed method.

The rest of this paper is organized as follows. Section 2 presents
the materials of longitudinal imaging data used in this paper and
the proposed deep learning method. Experiments and results are
provided in Section 3. Section 4 concludes this paper.

2. Materials and method

In this section, we will present the brain image sets used in this
work and the proposed classification algorithm. The MR  image is a
powerful brain imaging modality often used as biomarkers to help
physicians for AD diagnosis. It is still challenging to make use of the
high-dimensional and longitudinal image data to improve AD diag-
nosis. In this work, we propose a deep learning framework based
on combination of CNN and RNN to integrate the spatial and lon-
gitudinal features of MR images for AD diagnosis. There are three
main advantages to apply the deep learning model for our task.
First, the deep architecture of CNNs can explicitly make use of the
spatial structure of brain images and gradually extract the spatial
features from the low-, mid- to high-levels useful for classification
task. Second, cascading RNN can model and measure the disease
progression with the images at multiple time points. Finally, the
spatial and longitudinal features are combined into a classification
framework for more accurate diagnosis. Fig. 1 shows the flowchart
of the proposed classification algorithm based on combination of
CNN and RNN, which consists of three main steps: image process-
ing, spatial feature learning by 3D CNN, RNN based longitudinal
analysis and final classification, as detailed below.

2.1. Materials

In this study, the data used were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database, which can be

freely downloaded from the website (www.loni.ucla.edu/ADNI).
The ADNI database was  launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging and
Bioengineering (NIBIB), the Food and Drug Administration (FDA),

http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
http://www.loni.ucla.edu/ADNI
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Fig. 1. The flowchart of our proposed classification framework, where a deep CNN is
constructed to capture the spatial structural features of the images from each time
point while the stacked BGRUs are trained to caputre the longitudinal features of
the  mulitple time points. On top of stacked BGRU layers, one fully connected layer
and  softmax layer are appended to make final classification prediction.

Table 1
Demographic characteristics of the studied subjects from ADNI database (The values
are  denoted as mean ± standard deviation).

Diagnosis Number Age Gender (M/F) MMSE

AD 198 75.65 ± 7.73 103/95 23.36 ± 1.99
pMCI 167 74.89 ± 6.83 102/65 26.53 ± 1.70
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sMCI 236 74.89 ± 7.74 158/78 27.17 ± 1.83
NC  229 75.99 ± 5.01 119/110 29.09 ± 0.98

rivate pharmaceutical companies and non-profit organizations,
s a $60 million, 5-year public–private partnership. The primary
oal of the ADNI was to test whether serial MRI, Positron Emis-
ion Tomography (PET), other biological markers, and clinical and
europsychological assessment can be combined to measure the
rogression of MCI  and early AD. Determination of sensitive and
pecific markers of very early AD progression was  intended to aid
esearchers and clinicians to develop new treatments and monitor
heir effectiveness, as well as lessen the time and cost of clinical tri-
ls. The principal investigator of this initiative is Michael W.  Weiner,
.D., VA Medical Center and University of California, San Fran-

isco. ADNI was the result of efforts of many co-investigators from a
road range of academic institutions and private corporations. The
tudy subjects were recruited from over 50 sites across the U.S. and
anada and gave written informed consent at the time of enroll-
ent for imaging and genetic sample collection and completed

uestionnaires approved by each participating sites Institutional
eview Board (IRB). The initial goal of ADNI was to recruit 800
dults, aged from 55 to 90, to participate in the research.

Although the proposed method makes no assumption on a
pecific neuroimaging modality, MR  images is widely available,
on-invasive and often used as the first biomarker in the diag-
ostics of AD. In ADNI, MR  images were acquired according to
he ADNI acquisition protocol in (Jack et al., 2008). The MR  image
ets included standard T1-weighted MR  images acquired sagittally
sing volumetric 3D MPRAGE with 1.25 × 1.25 mm2 in-plane spa-
ial resolution and 1.2 mm  thick sagittal slices. Most of these images
ere obtained with 1.5 T scanners, while a few were acquired

sing 3 T scanners. Detailed information about MR  acquisition pro-
edures is available at the ADNI web site. In this work, we  use
he T1-weighted MR  brain image data acquired with 1.5 T scan-
ers from 830 ADNI participants including 198 AD, 403 MCI  (236
MCI and 167 pMCI), 229 NC subjects to test our proposed method.
able 1 presents the demographic details of the studied subjects
n this paper, where MMSE  denotes the Mini-Mental State Exami-
ation (MMSE). These subjects have MR  imaging data at different
umbers of time-points. The maximum number of time points is 6

ncluding baseline, 6-month, 12-month, 18-month, 24-month and
aging and Graphics 73 (2019) 1–10 3

36-month, denoted as t0, t1, t2, t3, t4 and t5, respectively. Table 2
shows the different numbers of the available studied subjects at
different time points from ADNI database.

The T1-weighted MR  brain images of multiple time points
were preprocessed to make the images from different systems
more similar before performing classification. All MR  images
were preprocessed by applying the typical procedures of Ante-
rior Commissure (AC)–Posterior Commissure (PC) correction,
skull-stripping, and cerebellum removal (Wang et al., 2011a).
Specifically, a correction of intensity inhomogeneity was first
performed on the MR  images using nonparametric nonuniform
intensity normalization (N3) algorithm (Sled et al., 1998). Secondly,
a robust and automated skull stripping method (Wang et al., 2011b)
was performed for brain extraction and cerebellum removal fol-
lowed by manually checking the skull-stripped images to ensure
the clean and dura removal. Thirdly, each brain image is segmented
into three kinds of tissue volumes, e.g., gray matter (GM), white
matter (WM),  and cerebrospinal fluid (CSF) volumes. The three tis-
sue volumes of different time-point images of each subject will be
spatially normalized together onto a standard space by a mass-
preserving deformable warping algorithm called HAMMER (Shen
and Davatzikos, 2003). During the image warping, the tissue vol-
ume  within any size of region is preserved, i.e., it is increased if the
region is compressed and vice versa. The warped mass-preserving
tissue volumes reflect the spatial distribution of tissues in the origi-
nal brain by taking into consideration the local tissue volumes prior
to warping. The warped mass-preserving tissue volumes are also
called as the tissue density maps. Since GM is more related to AD
and MCI  than WM and CSF, the GM density map  is used as the input
image for the following deep learning in this work.

2.2. Feature learning with 3D CNNs

Different from the conventional methods which directly use GM
density map  as the feature for classification, deep convolutional
neural networks (CNN) are used to learn the spatial features from
GM density map  in this work. CNN is a special kind of multi-layer
neural networks trained with a version of the back-propagation
algorithm. It has been widely used in several domains such as image
classification and object detection (He et al., 2015; Krizhevsky et al.,
2012; Lécun et al., 1998). However, most of these mature CNN
architectures are studied for 2D image recognition. In this work,
CNN with the 3D convolutional kernel is employed to learn the rich
features of 3D brain image. Typically, a deep CNN for feature extrac-
tion alternatively stacks several convolutional and sub-sampling
layers followed by fully connected layers. In this work, we have
made some changes on the traditional CNN network to learn the
rich features better for image classification. First, to make use of
the multi-level features, the features extracted from both low and
high level convolutional layers are combined by shortcut connec-
tions, which concatenate the feature maps from different depths
of CNN model. Second, in the pooling layer, we use the convolu-
tional operation with 2 × 2×2 stride instead of maximum operation
to subsample the feature maps, which can learn the linear com-
bination of the neurons for pooling. Fig. 2 shows the deep 3D
CNN architecture in this work, which is composed of convolution
block, full-connected block and Softmax layer. The convolution
block includes the convolution, batch normalization, ReLU (Rec-
tified Linear Unit) activation, dropout, sub-sampling layers while
full-connected block includes three full-connected layers. Accord-

ingly, Table 3 presents the structure details of deep 3D CNNs.

A typical convolutional layer convolves the input image with a
set of kernel filters, followed by adding a bias term and applying a
non-linear activation function, and finally produce a feature map
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Table 2
Numbers of the available studied subjects at different time points from ADNI database.

Diagnosis t0 t0+t1 t0+t1+t2 t0+t1+t2+t3 t0+t1+t2+t3+t4 t0+t1+t2+t3+t4+t5

AD 198 171 143 91 0 0
PMCI  167 164 154 140 97 14
SMCI  236 208 185 147 93 8
NC  229 215 204 161 16 0

Fig. 2. The architecture of deep 3D CNN model consisting of the convolution block (denoted as “Conv block”), the full-connected block and Softmax layer. The convolution
block  includes the convolution, batch normalization, ReLU activation, dropout, sub-sampling layers while the full-connected block includes three full-connected layers.

Table 3
The structure details of deep 3D CNNs.

Layer ID Layer name Detail information Output size Parameter number

0 input (1,50,42,42) 0
1  Conv 0 1 Padding: same (15,50,42,42) 420
2  Bn 0 (15,50,42,42) 60
3  Conv 0 p Stride: (2,2,2) (15,24,20,20) 6090
4  Conv 1 1 Padding: same (15,24,20,20) 6090
5  Bn 1 (15,24,20,20) 60
6  Conv 1 2 Padding: same (15,24,20,20) 6090
7  Merge 1 (Conv 0 p, Conv 1 2) (30,24,20,20) 0
8  Bn 2 1 (30,24,20,20) 120
9  Conv 2 1 Stride: (2,2,2) (25,12,10,10) 20275
10  Bn 2 2 (25,12,10,10) 100
11  Conv 2 2 Padding: same (25,12,10,10) 16900
12  Conv 2 cut Stride: (2,2,2) (15,12,10,10) 12165
13  Merge 2 (Conv 2 2, Conv 2 cut) (40,12,10,10) 0
14  Bn 3 1 (40,12,10,10) 160
15  Conv 3 1 Stride: (2,2,2) (35,6,5,5) 37835
16  Bn 3 2 (35,6,5,5) 140
17  Conv 3 2 Padding: same (35,6,5,5) 33110
18  Conv 3 cut Stride: (2,2,2) (25,6,5,5) 27025
19  Merge 3 (Conv 3 2, Conv 3 cut) (60,6,5,5) 0
20  Bn 4 (60,6,5,5) 240
21  Conv 4 1 Padding: valid (30,4,3,3) 48630
22  Conv 4 2 Padding: valid (30,2,1,1) 24330
23  Flatten 60 0
24  Full-connected 1 300 18300
25  Full-connected 2 50 15050

f

w
W

f
F
a
T

26  Full-connected 3 

27  softmax 

or each filter. The 3D convolution operation is defined as:

ulkj (x, y, z)

=
∑

ıx

∑

ıy

∑

ız

Fl−1
k

(x + ıx, y + ıy, z + ız) × Wl
kj(ıx, ıy, ız) (1)

here x, y and z denote the pixel positions for a given 3D image,
l
kj

(ıx, ıy, ız) is the jth 3D kernel weight connecting the kth

eature map  of the l-1 layer to the jth feature map  of the l layer,
l−1
k

is the kth feature map  of the previous l-1 layer, and ıx, ıy, ız
re the kernel sizes corresponding to the x, y and z coordinates.
he output ul

kj (x, y, z) is the convolutional response of kernel fil-
2 102
2 0

ter. Then, ReLU activation is applied after each convolution layer.
The jth 3D feature map  of l layer Fl

j (x, y, z) is obtained by summa-
tion of the response maps of different 3D convolution kernels. By
using 3D kernel to consider the spatial correlations, the 3D CNNs
can take full advantages of the volumetric contextual information
to learn the spatial features.

The convolutional layer is often followed by pooling layer. Tak-
ing small block of feature maps, the pooling layer produces a single
output for the block. There are several ways for the pooling, such as

taking the average value or the maximum, or a linear combination
of the neurons in the block. To learn the features, we apply the con-
volution operation with 2 × 2×2 stride to learn a linear combination
of the neurons for pooling. Through pooling, the features become
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ore compact and efficient from low to high layers. The third type
f layer is the fully connected layers. After several convolutional
nd pooling layers, the high-level reasoning of neural network is
one by fully connected layers. All 3D feature maps are flattened
nd concatenated into a 1D vector as the input of fully connected
ayer. Each neuron of fully connected layer outputs the linear com-
ination of all neurons from the previous layer and passed through

 nonlinearity. The inputs and outputs of fully connected layers
re concatenated into one-dimensional vector and are not spatially
ocated.

Finally, a softmax layer is appended to the last fully con-
ected layer and is fine-tuned back-propagation with negative

og-likelihood to predict class probability. The softmax function is
 derivation of logistic function that highlights the largest values
n a vector while suppressing those significantly below the maxi-

um.  The softmax layer has been often used as the last layer of CNN
rchitecture to generate a prediction score for each class label. The
utput of each node ranges from 0 and 1, and the sum of all the
odes is always 1.

In our implementation, the 3D deep CNN is built by stacking
nput block, Conv block, full-connected block and Softmax layer
s shown in Fig. 3. Batch normalization and ReLU activation are
dded after each convolutional layer to improve the performance
f the whole 3D CNN model. Feature subsampling is conducted
y 2 × 2×2 stride with convolution layers. The 3D convolutional
ernels are randomly initialized from the Gaussian distribution
nd other trainable parameters are tuned using the standard back-
ropagation with stochastic gradient descent by minimizing the
ross-entropy loss. In addition, the dropout strategy is used to
educe the co-adaption of intermediate features and overfitting
roblem and improve the generalization capability. For each time
oint, a deep CNN is constructed on the GM density maps to learn
he features for the task of disease classification.

.3. RNN based longitudinal analysis

With the increasing availability of longitudinal image data, the
ynamic features that directly describe the temporal changes of
M tissue volumes can also be extracted to provide more infor-
ation about the pathological development. The deep 3D CNN is

onstructed to learn the features of single point. To combine the
eatures of multiple time points, one direct method is to concate-
ate the learned features by deep CNNs from multiple time points
nd design a classifier to make the final classification. However, this
ethod ignores the correlation information between the sequential

eatures. Recurrent neural networks (RNN) are effective to pro-
ess and model the sequential data. To fully utilize the longitudinal
mage information, we propose the stacked RNNs to model and

easure the temporal variations about the disease progression as
hown in Fig. 3. These longitudinal measures will be used as the
upplementary features in this study.

A RNN is a class of artificial neural network in which con-
ections between nodes form a directed graph along a sequence.
ifferent from traditional neural networks which assume that all

nputs (and outputs) are independent of each other, RNN can
odel the dynamic temporal behavior for a time sequence with

he output being dependent on the previous computations. The
ime sequences of inputs can be processed with the internal state
memory) of RNNs, which captures information about what has
een computed so far. In theory, RNNs can make use of informa-
ion in arbitrarily long sequences, but in practice they are limited to
nly a few steps. For longitudinal analysis of structural MR  images,

NN is built to make use of the sequential MR  images at multi-
le time points, which can model the progression of the disease. In
he past decades, the performance of RNN was severely restricted
ue to the difficulty of training. Gradient mass and explosion are
aging and Graphics 73 (2019) 1–10 5

the common unsolved problems until the emergence of LSTM—a
special kind of RNN structure. In the traditional chain structure, a
simple tanh activation unit is repeated in each layer. LSTM modifies
it to a carefully designed structure, which contains three gate units
and a memory cell unit. The three gates are forget gate, input gate
and output gate, respectively. By updating the state of memory cell
through three gates, LSTM can discard irrelevant information and
effectively capture the helpful information in sequence. Gate recur-
rent unit (GRU) was  proposed as a special kind of variants for LSTM
(Cho et al., 2014). Through removing the memory cell from the
original LSTM, GRU makes RNN simpler without degrading perfor-
mance. It was concluded that GRU has a slightly better performance
than LSTM (Chung et al., 2014). Thus GRU is used to build the RNN
model.

Compared to LSTM, GRU has only two  gates: update gate z and
reset gate r, thus it has the advantages of less parameters and easier
training. The forget and output gates of LSTM are merged into a
single update gate z, which is used to get the current state of the
output via linear interpolation in GRU, as shown in Fig. 3. When
the input ( xi, hi−1) denotes the features of the ith time point and
the previous hidden state, the update gate z and reset gate r are
computed as:

zi = �(Wxzxi + Whzhi−1) (2)

ri = �(Wxrxi + Whrhi−1) (3)

where Wxz , Whz , Wxr and Whr are the corresponding weight matri-
ces; � is a logistic sigmoid function. The candidate state of the
hidden unit is computed by:

h̃i = tan(Wxhxi + Whh(hi−1 � ri)) (4)

where � is an element wise multiplication. When ri is close to 0
(off), the reset gate r effectively makes the unit act as if it is reading
the first symbol of an input sequence, allowing it to forget the pre-
viously computed state. The ith hidden activation state hi of GRU
is a linear interpolation between the previous state hi−1 and the
candidate state h̃i:

(5)

The MR  image of each time point is correlated with those of both
its preceding and following time point in capturing the temporal
variation. Thus, we  apply the Bidirectional-GRU (BGRU), which con-
sists of a forward GRU (i is from 1 to n) and a backward GRU  (i is
from n to 1), to capture correlation features of longitudinal image
data. The inputs of each BGRU include the features of multiple time
points generated by 3D CNNs, i.e., the outputs of fully connection
layer. The outputs of both forward and backward GRUs are con-
catenated together to form the outputs of BGRU at the same time.
In addition, to further enhance the longitudinal information flow in
the network, three layers of BGRUs are stacked into a deep structure
by taking the outputs of one BGRU as the input of another BGRU.
Fig. 3 shows the flow chart of deep RNN network architecture based
on cascaded BGRUs. In our deep learning method, RNN integrates
the features of multiple time points to learn the longitudinal fea-
tures. The first BGRU layer takes the feature vectors of multiple time
points produced by CNN. The following 2 BGRU layers are cascaded
to learn the high-level features of the time series features. The first
two BGRU layers produce the outputs of multiple sequences, while
the third BGRU layer generates single output. At last, the learned
features from the outputs of BGRUs are concatenated to a fully
connected layer and softmax layer for the classification task.

Table 4 shows the deep RNN network structures based on cas-

caded BGRUs, which consists of one masking layer, three BGRU
layers, one full-connected layer and a softmax layer, generating
a longitudinal classification prediction. For the longitudinal anal-
ysis with multiple time points, the MR  images of some subjects
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Fig. 3. Our deep recurrent neural network (RNN) based on three stacked layers of BGRU, where xi is the feature vector generated from image of time point i as the inputs
of  BGRU while yi1 and yi2 are the output feature vectors of GRU from two  directions (Th
reset  gate, update gate, candidate hidden layer and output layer, respectively). On top of 

classification prediction.

Table 4
The deep RNN network structures based on cascaded BGRUs.

Layer ID Layer name Detail information Output size Parameter number

0 Input (5, 300) 0
1  Masking Mask value = -1 (5, 300) 0
2  BGRU 1 300 (5, 600) 1081800
3  BGRU 2 200 (5, 400) 961200
4  Dropout 1 0.2 (5, 400) 0
5  BGRU 3 50 100 135300
6  Full connected 100 50 5050
7  Dropout 2 0.2 50 0
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ay  be missing in the later time points. To address the missing
ata problem in longitudinal analysis, we take the advantage of the
NN’s capability on analyzing sequence inputs of varying lengths
ith missing time points. The masking layer after the input layer is

dded to deal with the missing input data. In our implementation,
he missing time points for every subject are padded with negative

eaningless values (-1 in our experiments) in the masking layer
o that the input sequences are all the same length for the RNN
odelling. The RNN model can learn the negative values carry no

nformation so that the sequences are not of the same length in
erms of content, but the inputs of same length are required to per-
orm the computation. Finally, the RNN model generate the features
f same length.

.4. Final classification

Construction of the whole deep network includes training of
D CNN and RNN models. In our implementation, the deep 3D
NN models are pre-trained with the GM density data at all time
oints and then fine-tuned with the data at each time point, which
an not only capture the changes of longitudinal data at different
ime points but also maintain the consistency of the learned fea-
ures input to the BGRU network. The softmax function is used to
irectly map  the outputs of the fully connected layer to the pre-
iction scores of all class labels. Then, the trained parameters of
D CNNs are used to fix all convolution and pooling layers of the
D CNNs, while the parameters of RNN are fine-tuned jointly with
he upper fully connected and softmax prediction layers. Finally, in
he classification learning process, the initial-trained parameters
f 3D CNNs and RNN are fixed, while the parameters of the upper

ully connected layers and softmax prediction layer are fine-tuned
ointly to combine the spatial and longitudinal features for the task-
pecific classification. The jointly fine training is included to adjust
e internal structure of GRU is shown in the bottom, where ri, zi, ĥi and hi are the
stacked BGRU layers, one fully connected and one softmax layers are appended for

the parameters to be able to handle the heterogeneity and produce
a reliable estimate from the longitudinal images.

However, training a deep CNN is challenged by the risk of over-
fitting as the current datasets for AD diagnosis are relatively small
compared to other computer vision tasks such as face recognition.
A common practice is to initialize the weights with the pre-trained
models on some large dataset. To mitigate the problem, we adopted
dropout layer for regularization (Srivastava et al., 2014). Fig. 4(a)
and (b) show the curves of loss convergence for the CNN network
training and validation on the classifications of AD vs. NC and pMCI
vs. sMCI, respectively, while Fig. 4(c) and (d) show the curves of
loss convergence for the RNN network training and validation on
the classifications of AD vs. NC and pMCI vs. sMCI, respectively.
From the results, we can see that the loss convergence for AD vs.
NC classification is faster than that of pMCI vs. sMCI classification.
This is because the classification task of pMCI vs. sMCI is more chal-
lenging than that of AD vs. NC. The over-fitting problem has been
alleviated by using some dropout techniques and data augmenta-
tion in our proposed network. For training the deep CNN model,
the batch size is set to 128, and the model begins to converge after
iteration of 150 epochs. When training the BGRU model, the batch
size is set as 60 and the model begins to converge after iteration of
500 epochs for classification of AD vs. NC.

3. Experimental results

3.1. Experiments

In this section, experiments are conducted to test the proposed
classification algorithm based on combination of convolutional and
recurrent neural networks for longitudinal analysis of structural
MR images. The image sets used in this study and the correspond-
ing image processing steps are illustrated in Section 2. There are
MR images of 830 subjects including 198 AD, 167 pMCI, 236 sMCI
and 229 NC subjects from ADNI. The GM density map size after
above image processing is of 256 × 256 × 256 voxels. We  remove
those pixels with zero intensity values to obtain the image size
200 × 168 × 168 voxels. These images are subsampled by 4 as the
inputs of proposed classification framework. Data augmentation
is conducted by subsampling the image by shifting just ±1 vox-
els along the three coordinates to generate additional images for
training. Augmentation is not used on the validation and test sets.

In this work, the proposed classification algorithm is imple-
There are 5 deep CNNs independently trained to extract the spatial
features for the individual time points with the output of the pre-
diction scores for disease classification. The initial weights for the
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hole network is Xavier uniform. The Adadelta gradient descent
lgorithm (Zeiler, 2012) is used to train the deep CNNs with 0.8
earning rate. The parameter rho is set to 0.7, epsilon is set to 1 × 10-8

ith weight decay being 0. We use batch normalization layers, each
ollowed with a ReLU activation layer, and the dropout layer param-
ter is set 0.2. As for training the BGRUs, Adam optimizer method
Kingma and Ba, 2014) is adopted for stochastic optimization. The
rst fully connected layer has 50 hidden neurons, followed with
n ELU activation layer, and the final binary output layer is soft-
ax  classification function. To avoid overfitting problem, dropout

s adopted in our network (Srivastava et al., 2014).
In our experiments, the proposed algorithm is tested on classi-

cations of AD vs. NC and pMCI vs. sMCI. 5-fold cross-validation is
sed to avoid random factors affecting the results. Each time, one

old of the image set is used for testing, another one fold is used
or validation while the left 3 folds are used for training. The vali-
ation part is used for stopping the training process to obtain the
odel weights with the optimized performance. To evaluate the

lassification performance, we compute the classification accuracy
ACC), the sensitivity (SEN), the specificity (SPE), and the area under
eceiver operating characteristic curve (AUC) as the performance

easures. The receiver operating characteristic (ROC) curves are
lso shown for comparison.

.2. The effectiveness of CNN and BGRU

In the first experiment, we test the effectiveness of CNN and RNN

odels on the classification performance. First, we only perform

he CNN classification model on the baseline GM data without the
ollowing RNN model. Second, instead of using the CNN to extract
he high-level features of GM density map, we use the traditional
ification tasks: (a) CNN on AD vs. NC; (b) CNN on pMCI vs. sMCI; (c) RNN on AD vs.

principal component analysis (PCA) to extract the features as inputs
to train the RNN model based on cascaded BGRUs for longitudi-
nal analysis of the image data. For fair comparison, the number
of components reduced by PCA is same as the number of features
extracted by CNN, which is 300 in our experiments. Finally, we
test our proposed classification algorithm based on combination of
CNN and RNN models to extract the spatial and temporal features
for classification. Fig. 5 shows the comparison of their correspond-
ing ROC curves. Table 5 demonstrates the performance comparison
of CNN, RNN, and their combination for classifications of AD vs. NC
and pMCI vs. sMCI. These results show that the proposed algorithm
based on combination of CNN and RNN can improve the classifica-
tion performance compared to using CNN and RNN individually.

The second experiment is to test the performance improvement
by using RNN for the longitudinal analysis with the MRI  data from
different number of multiple time points on classifications of AD
vs. NC and pMCI vs. sMCI, as shown in Table 6. In the experiment,
we test the proposed method by gradually adding more sequen-
tial MRIs from different number of time points for the RNN based
longitudinal analysis. In Table 6, t0, t1, t2, t3, t4 and t5 denote the
baseline, 6-month, 12-month, 18-month, 24-month and 36-month
MRI  brain images, respectively. From these results, we can see that
the classification performances are gradually improved by adding
more sequential data for longitudinal analysis.

3.3. Comparison with other methods
In this section, we compare the proposed method with other
existing methods to show the performance. First, we compare
our proposed method to two  state-of-the-art longitudinal analysis
methods. The same number of training and test subjects and the
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Fig. 5. Comparisons of ROC curves on classifications of (a) AD vs. NC and (b) pMCI vs. sMCI with CNN only, RNN, and the combination of CNN and RNN (denoted as “CNN + RNN”).

Table 5
The performance comparison of CNN, RNN, and the combination of CNN and RNN.

Perf. (%)
AD vs. NC (%) pMCI vs. sMCI (%)

ACC SEN SPE AUC ACC SEN SPE AUC

CNN 88.99 84.85 92.58 92.53 70.22 62.87 75.42 68.88
RNN  85.01 82.32 87.34 90.30 68.49 64.67 71.19 67.52
CNN  + RNN 91.33 86.87 95.20 93.22 71.71 65.27 76.27 73.03

Table 6
The performance comparison with the MRI  data from different numbers of time points.

Perf. (%)
AD vs. NC (%) pMCI vs. sMCI (%)

ACC SEN SPE AUC ACC SEN SPE AUC

t0 88.52 84.85 91.70 90.35 69.48 62.87 74.15 68.78
t0+t1  89.93 85.35 93.89 91.43 69.73 62.28 75.00 69.56
t0+t1+t2 90.16 85.35 94.32 91.89 70.22 63.47 75.00 71.03
t0+t1+t2+t3 90.40 86.87 93.45 92.78 70.97 64.07 75.85 71.57
t0+t1+t2+t3+t4 91.33 86.87 95.20 93.22 71.22 64.67 75.85 72.89
t0+t1+t2+t3+t4+t5 – 71.71 65.27 76.27 73.03

Table 7
The performance comparison of longitudinal analysis with different number of time points for classification of AD vs. NC.

Method Evaluation t0 t0+t1 t0+t1+t2 t0+t1+t2+t3 t0+t1+t2+t3+t4

SVM averaging
ACC 85.48 85.71 86.18 86.65 86.65
SEN  80.81 80.81 81.31 81.82 81.31
SPE  89.52 89.96 90.39 90.83 91.27

CNN  averaging
ACC 87.35 88.06 88.52 88.76 88.99
SEN  82.32 83.33 84.34 84.34 84.85
SPE  91.70 92.14 92.14 92.58 92.58

BGRU
ACC  88.52 89.93 90.16 90.40 91.33
SEN  84.85 85.35 85.35 86.87 86.87
SPE  91.70 93.89 94.32 93.45 95.20

Table 8
The performance comparison of longitudinal analysis with different number of time points for classification of pMCI vs. sMCI.

Method Evaluation t0 t0+t1 t0+t1+t2 t0+t1+t2+t3 t0+t1+t2+t3+t4 t0+t1+t2+t3+t4+t5

SVM averaging
ACC 64.52 65.01 65.26 65.26 65.51 66.00
SEN 53.89 54.49 53.89 55.09 53.89 55.09
SPE 72.03 72.46 73.31 72.46 73.73 73.73

CNN  averaging
ACC 68.24 68.49 68.49 69.23 69.73 70.22
SEN 61.68 62.87 61.08 62.28 62.87 62.87
SPE 72.88 72.46 73.73 74.15 74.58 75.42

70.22
63.47
75.00

s
t
t
t
a
l

BGRU
ACC  69.48 69.73 

SEN 62.87 62.28 

SPE 74.15 75.00 

ame original features are used for fair comparison. We  implement
hese methods with our best efforts. One direct method for longi-

udinal analysis is to cascade the extracted original features at each
ime point into a long vector, and then employ principal component
nalysis (PCA) for feature reduction on the cascaded features fol-
owed by a support vector machine (SVM) classifier. The classifier
 70.97 71.22 71.71
 64.07 64.67 65.27

 75.85 75.85 76.27

outputs at multiple time points are ensembled by averaging for final
classification. This method is denoted as “SVM Averaging”. In addi-

tion, we  also compare our proposed method with another related
method, which directly combine the results of 3D CNN from mul-
tiple time points by using averaging (denoted as “CNN averaging”),
instead of modelling the longitudinal features with cascaded BGRU.
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ig. 6. The comparison of classification performances for longitudinal analysis with
MCI.

hese methods are tested with different numbers of time points
y gradually adding one time point from the baseline, 6-month,
2-month, 18-month, and 24-month brain images. Table 7 and 8
emonstrates the performance comparison of longitudinal analy-
is with different numbers of time points for classification of AD
s. NC and pMCI vs. sMCI, respectively. Accordingly, Fig. 6(a) and
b) show the comparison of classification accuracy improvement
hen increasing the number of input sequences for longitudinal

nalysis in classifications of AD vs. NC and pMCI vs. sMCI, respec-
ively. From these results, we can observe that the classification
ccuracy is improved by increasing the number of time points and
ur method performs better than the CNN averaging method for
ifferent lengths of input sequence, especially with 5 time points.

t shows that BGRU can learn the longitudinal features from the
ime sequential data to improve the classification.

.4. Discussion

Although there are many methods proposed to extract the
patial and longitudinal feature representations in longitudinal
nalysis of sequential MRIs for computer-aided AD diagnosis, most
f them are based on hand-crafted measures that require time-
onsuming pre-processing procedures such as segmentation of
OIs. To this end, we develop a classification framework based on
ombination of CNN and RNNs for longitudinal analysis of struc-
ural MR  images at variable-length time series for AD diagnosis.
he deep 3D CNN is constructed to learn the spatial features of the
tructural MR  images for the task of AD classification, while the RNN
ith cascaded three BGRU layers is constructed on the outputs of

NN at multiple time points for extracting the longitudinal features
or AD classification. Instead of independently performing feature
xtraction and classifier training, the proposed method is a data-
riven method to jointly learn the spatial and longitudinal features
nd disease classifier model for optimal classification performance.
n addition, different from existing methods which cannot deal with
he missing data at some time points, the proposed method can take
dvantages of RNN to model the longitudinal image analysis with
ariable length of input sequences.

As for the computation cost, the proposed deep network model
ncludes both the training and testing stages. In the training stage,
t takes about 25 min  to train the proposed deep network model. In
he test stage, it takes 8.5 ms  to test for a given image. All experi-

ents are conducted on PC with GPU NVIDIA GeForce GTX1080Ti
f 12GB memory.

Since some pathological patterns are affected by brain disease,

nly a subset of image regions may  be closely related to the diag-
osis of AD. Thus, it is also important to identify these regions for
iagnosis and interpretations of the diseases. To achieve this, we
dopt the visualization technique proposed in (Simonyan et al.,
Fig. 7. The visualization of the regions most related to AD diagnosis by using the
proposed classification method.

2013) to generate the image-specific class saliency map, highlight-
ing the discriminative areas of the given image with respect to a
class. For each test image, we  generate the saliency map of the
input GM density map  with respect to AD. The saliency maps of
all test images are averaged to get a mean saliency map. For better
interpretation, thresholding is applied on the mean saliency map
to obtain the areas most related to the physiological abnormality of
AD as shown in Fig. 7, where the highlighted parts denote the most
relevant regions to AD diagnosis. From these results, we can see that
the highlighted parts cover the regions that are mostly affected by
AD, such as hippocampus, amygdala, posterior temporal lobe etc.
(Liu et al., 2015; Zhang et al., 2011).

4. Conclusion

In this paper, we  have proposed a new classification framework
based on combination of CNN and RNN to perform the longitudi-
nal analysis of structural MR  images for AD diagnosis. CNN model
was proposed to extract the spatial features of each time point
and generates single-time classification result, while RNN based
on cascaded BGRU was used to model the temporal variations and
extract the longitudinal features for improving disease classifica-
tion. Experimental results on the ADNI dataset demonstrate the
effectiveness of the proposed classification algorithm. In the future
works, we  will include other imaging features such as structural
and functional connection networks of brain for RNN based lon-
gitudinal analysis. In addition, our work can be extended to other
modalities such as fMRI and Positrons Emission Tomography (PET)
images for AD diagnosis in the future, even other medical disease
diagnosis fields.
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